Acta Cryst. (1998). C54, 948-949

Di- μ -bromo-1:2 $\kappa^4 Br$ -bis(quinoline)-1 κN ,2 κN -bis(triphenylphosphine)-1 κP ,2 κP -dicopper(I)

Qiong-Hua Jin,^{a,b} De-Liang Long,^b Yu-Xian Wang^a and Xin-Quan Xin^b

^aDepartment of Chemistry, Capital Normal University, Beijing 100037, People's Republic of China, and ^bCoordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China. E-mail: xxin@netra. nju.edu.cn

(Received 22 September 1997; accepted 15 January 1998)

Abstract

The crystal structure of the title complex, $[Cu_2Br_2-(C_9H_7N)_2(C_{18}H_{15}P)_2]$, has been determined by X-ray diffraction. The molecule possesses a crystallographic centre of symmetry in which the four-membered $Cu_2(\mu$ -Br)_2 ring is planar, as required by the symmetry, with a Br—Cu—Br angle of 95.83 (2)° and two Cu—Br distances of 2.520 (1) and 2.573 (1) Å. The long Cu···Cu distance [3.414 (1) Å] indicates the absence of direct bonding between the two Cu atoms. The coordination sphere of copper is a distorted tetrahedron, with the six angles around copper ranging from 95.83 (2) to 118.1 (1)°. The Cu—N and Cu—P distances are 2.065 (3) and 2.216 (1) Å, respectively.

Comment

In the course of our work on syntheses of Mo(W)-Cu-S compounds, we obtained a series of complexes containing phosphorus and nitrogen ligands (Lang, Bao *et al.*, 1993; Lang, Zhou *et al.*, 1993; Lang *et al.*, 1994; Hou *et al.*, 1995). Recently, in a similar system, we acquired a halogen-bridged dicopper complex, (I), which contains phosphino and heterocyclic ligands.

As depicted in Fig. 1, $[Cu(PPh_3)(C_9H_7N)(\mu-Br)]_2$ is centrosymmetric and the four-membered $Cu_2(\mu-Br)_2$ ring is planar, as required by the symmetry, with a BrCu—Br angle of 95.83 (2)°. The long Cu···Cu distance [3.414(1)Å] indicates the absence of direct bonding between the two Cu atoms. The Cu atom has a distorted tetrahedral coordination geometry and is bonded to two bridging Br atoms, an N atom of quinoline and a P atom of triphenylphosphine. The geometry of (I) is similar to that of the copper complexes $[Cu(PPh_3)(C_7H_5NS_2)(\mu -$ Cl)]₂ (Shibahara et al., 1997) and $[Cu(PPh_3)Br(\mu-Py-$ SH)]2 (Karagiannidis et al., 1989). In the latter case, the pyridinethione ligand bridges two Cu atoms. The bond distances between the Cu and bridging Br atoms [Cu—Br 2.520(1) and Cu—Brⁱ 2.573(1)Å; symmetry code: (i) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, 2 - z] are normal for a bridging Cu-Br bond (Dyason et al., 1985), but longer than the terminal Cu—Br bond [2.462(2) Å] in $[Cu(PPh_3)Br(\mu -$ PysH)]₂ (Karagiannidis et al., 1989). The smaller Br— Cu—Brⁱ angle (95.83°) in the planar Cu₂(μ -Br)₂ ring causes the transannular $Br \cdot \cdot Br'$ distance of 3.780 (5) Å. which is shorter than the sum of the van der Waals radius of Br atoms (1.95 Å; Dean, 1985).

Fig. 1. The title complex with displacement ellipsoids shown at the 30% probability level. H atoms have been omitted for clarity.

Experimental

 $[Cu(C_9H_7N)(PPh_3)Br]_2$ was obtained as a by-product of the reaction of equimolar CuBr, PPh₃ and C₉H₇N in the presence of $(NH_4)_2MoO_2S_2$ in DMF solution for 4 h at 373 K. Yellow crystals of the complex were obtained by slow evaporation of the DMF solution.

Crystal data

 $\begin{bmatrix} Cu_2 Br_2 (C_9 H_7 N)_2 (C_{18} H_{15} P)_2 \end{bmatrix} = M$ $M_r = 1069.76$

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

Cell parameters from 30

reflections

 $\theta = 4.92 - 14.95^{\circ}$

 $\mu = 2.64 \text{ mm}^{-1}$

 $0.5\,\times\,0.4\,\times\,0.3$ mm

T = 293 (2) K

Prism

Yellow

 $R_{int} = 0.045$

 $k = 0 \rightarrow 21$

 $l = 0 \rightarrow 13$

 $h = -29 \rightarrow 27$

3 standard reflections

every 97 reflections

intensity decay: none

 $\theta_{\rm max} = 25^{\circ}$

Monoclinic C2/c a = 24.823 (4) Å b = 18.170 (2) Å c = 11.429 (2) Å $\beta = 110.61 (1)^{\circ}$ $V = 4825 (2) Å^{3}$ Z = 4 $D_{x} = 1.473 \text{ Mg m}^{-3}$ D_{m} not measured

Data collection Siemens P4 diffractometer θ -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.258$, $T_{max} = 0.453$ 4909 measured reflections 4270 independent reflections 2575 reflections with $l > 2\sigma(l)$

Refinement

 $\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-3}$ Refinement on F^2 $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$ $R[F^2 > 2\sigma(F^2)] = 0.036$ wR(F²) = 0.072 Extinction correction: SHELXL93 S = 1.0514270 reflections Extinction coefficient: 0.00197 (8) 281 parameters Scattering factors from H atoms: see below $w = 1/[\sigma^2(F_o^2) + (0.0351P)^2]$ International Tables for where $P = (F_o^2 + 2F_c^2)/3$ Crystallography (Vol. C) $(\Delta/\sigma)_{\rm max} = 0.001$

The data were corrected for Lorentz and polarization effects. The structure was solved by direct methods (*SHELXS86*; Sheldrick, 1990) and expanded using Fourier techniques. H atoms were placed in calculated positions (C—H = 0.93 Å) and refined as riding ($U_{\rm iso} = 0.078$ Å²).

Data collection: XSCANS (Fait, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

This research was supported by the Beijing Municipal Bureau of Scientific & Technological Cadre Foundation of China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1096). Services for accessing these data are described at the back of the journal.

References

- Dean, J. A. (1985). Lange's Handbook of Chemistry, 13th ed., pp. 3-122. New York: McGraw-Hill.
- Dyason, J. C., Engelhardt, L. M., Pakawatchai, C., Healy, P. C. & White, A. H. (1985). Aust. J. Chem. 38, 1243–1250.
- Fait, J. (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Hou, H.-W., Xin, X.-Q., Huang, X.-Y., Cai, J.-H. & Kang, B.-S. (1995). Chin. Chem. Lett. 6, 91-93.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Karagiannidis, P., Aslaidis, P. & Kessissoglou. D. P. (1989). Inorg. Chim. Acta, 156, 47-56.
- Lang, J.-P., Bao, S.-A., Xin, X.-Q. & Yu, K.-B. (1993). Polyhedron. 12, 801-806.
- Lang, J.-P., Xin, X.-Q. & Yu, K.-B. (1994). J. Coord. Chem. 33, 99-107.
- Lang, J.-P., Zhou, W.-Y., Xin, X.-Q., Cai, J.-H., Kang, B.-S. & Yu, K.-B. (1993). *Polyhedron*, **12**, 1647–1653.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–353.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Shibahara, T., Kobayashi, S., Long, D. & Xin, X. (1997). Acta Cryst. C53, 58-60.