Acta Cryst. (1998). C54, 948-949

Di- μ-bromo-1:2 $\kappa^{4} \operatorname{Br}$-bis(quinoline)$1 \kappa N, 2 \kappa N$-bis(triphenylphosphine)$1 \kappa P, 2 \kappa P$-dicopper(I)

Qiong-Hua Jin, a,b De-Liang Long, ${ }^{b}$ Yu-Xian Wang ${ }^{a}$ and Xin-Quan Xin ${ }^{b}$
"Department of Chemistry, Capital Normal Universiț; Beijing 100037, People's Republic of China, and
${ }^{b}$ Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China. E-mail: xxin@netra. nju.edu.cn

(Received 22 September 1997: accepted 15 January 1998)

Abstract

The crystal structure of the title complex, $\left[\mathrm{Cu}_{2} \mathrm{Br}_{2}-\right.$ $\left.\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$, has been determined by X-ray diffraction. The molecule possesses a crystallographic centre of symmetry in which the four-membered Cu_{2} ($\mu-$ $\mathrm{Br})_{2}$ ring is planar, as required by the symmetry, with a $\mathrm{Br}-\mathrm{Cu}-\mathrm{Br}$ angle of $95.83(2)^{\circ}$ and two $\mathrm{Cu}-$ Br distances of $2.520(1)$ and $2.573(1) \AA$. The long $\mathrm{Cu} \cdots \mathrm{Cu}$ distance $[3.414(1) \AA$] indicates the absence of direct bonding between the two Cu atoms. The coordination sphere of copper is a distorted tetrahedron, with the six angles around copper ranging from 95.83 (2) to $118.1(1)^{\circ}$. The $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{P}$ distances are 2.065 (3) and 2.216 (1) \AA, respectively.

Comment

In the course of our work on syntheses of $\mathrm{Mo}(\mathrm{W})-$ $\mathrm{Cu}-\mathrm{S}$ compounds, we obtained a series of complexes containing phosphorus and nitrogen ligands (Lang, Bao et al., 1993; Lang, Zhou et al., 1993; Lang et al., 1994; Hou et al., 1995). Recently, in a similar system, we acquired a halogen-bridged dicopper complex, (I), which contains phosphino and heterocyclic ligands.

(I)

As depicted in Fig. 1, $\left[\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)(\mu-\mathrm{Br})\right]_{2}$ is centrosymmetric and the four-membered $\mathrm{Cu}_{2}(\mu-\mathrm{Br})_{2}$ ring is planar, as required by the symmetry, with a Br -
$\mathrm{Cu}-\mathrm{Br}$ angle of $95.83(2)^{\circ}$. The long $\mathrm{Cu} \cdots \mathrm{Cu}$ distance [3.414(1) A] indicates the absence of direct bonding between the two Cu atoms. The Cu atom has a distorted tetrahedral coordination geometry and is bonded to two bridging Br atoms, an N atom of quinoline and a P atom of triphenylphosphine. The geometry of (I) is similar to that of the copper complexes $\left[\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}\right)(\mu-\right.$ $\mathrm{Cl})]_{2}$ (Shibahara et al., 1997) and $\left[\mathrm{Cu}\left(\mathrm{PPh}_{3}\right) \mathrm{Br}(\mu-\mathrm{Py}-\right.$ $\mathrm{SH})]_{2}$ (Karagiannidis et al., 1989). In the latter case, the pyridinethione ligand bridges two Cu atoms. The bond distances between the Cu and bridging Br atoms $\left[\mathrm{Cu}-\mathrm{Br} 2.520(1)\right.$ and $\mathrm{Cu}-\mathrm{Br}^{\mathrm{i}} 2.573$ (1) \AA; symmetry code: (i) $\left.-x+\frac{1}{2},-y+\frac{1}{2}, 2-z\right]$ are normal for a bridging $\mathrm{Cu}-\mathrm{Br}$ bond (Dyason et al., 1985), but longer than the terminal $\mathrm{Cu}-\mathrm{Br}$ bond [2.462 (2) A] in $\left[\mathrm{Cu}\left(\mathrm{PPh}_{3}\right) \mathrm{Br}(\mu-\right.$ PysH) $]_{2}$ (Karagiannidis et al., 1989). The smaller $\mathrm{Br}-$ $\mathrm{Cu}-\mathrm{Br}^{i}$ angle $\left(95.83^{\circ}\right)$ in the planar $\mathrm{Cu}_{2}(\mu-\mathrm{Br})_{2}$ ring causes the transannular $\mathrm{Br} \cdots \mathrm{Br}^{i}$ distance of 3.780 (5) \AA, which is shorter than the sum of the van der Waals radius of Br atoms (1.95 \AA; Dean, 1985).

Fig. 1. The title complex with displacement ellipsoids shown at the 30% probability level. H atoms have been omitted for clarity.

Experimental

$\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Br}\right]_{2}$ was obtained as a by-product of the reaction of equimolar $\mathrm{CuBr}, \mathrm{PPh}_{3}$ and $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$ in the presence of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{MoO}_{2} \mathrm{~S}_{2}$ in DMF solution for 4 h at 373 K . Yellow crystals of the complex were obtained by slow evaporation of the DMF solution.

Cristal data

$\left[\mathrm{Cu}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] \quad$ Mo $K \alpha$ radiation
$M_{i}=1069.76$
$\lambda=0.71073 \AA$

[^0]Monoclinic
C2/c
$a=24.823$ (4) Å
$b=18.170(2) \AA$
$c=11.429(2) \AA$
$\beta=110.61(1)^{\circ}$
$V=4825(2) \AA^{3}$
$Z=4$
$D_{x}=1.473 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens P4 diffractometer
$\theta-2 \theta$ scans
Absorption correction:
ψ scan (North et al., 1968)
$T_{\text {min }}=0.258, T_{\text {max }}=0.453$
4909 measured reflections
4270 independent reflections 2575 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$n \cdot R\left(F^{2}\right)=0.072$
$S=1.051$
4270 reflections
281 parameters
H atoms: see below
$w^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0351 P)^{2}\right]$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.56 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.38 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } \\
& \quad \text { SHELXL93 } \\
& \text { Extinction coefficient: } \\
& 0.00197 \text { (8) } \\
& \text { Scattering factors from } \\
& \text { International Tables for } \\
& \text { Crystallography (Vol. C) }
\end{aligned}
$$

where $P=\left(F_{0}^{2}+2 F_{c}^{2}\right) / 3$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=25^{\circ}$
$h=-29 \rightarrow 27$
$k=0 \rightarrow 21$
$l=0 \rightarrow 13$

3 standard reflections every 97 reflections intensity decay: none
$(\Delta / \sigma)_{\text {max }}=0.001$
The data were corrected for Lorentz and polarization effects. The structure was solved by direct methods (SHELXS86; Sheldrick, 1990) and expanded using Fourier techniques. H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.93 \AA$) and refined as riding ($U_{\mathrm{i} \mathrm{\hookleftarrow} \mathrm{\omega}}=0.078 \AA^{2}$).

Data collection: XSCANS (Fait, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

This research was supported by the Beijing Municipal Bureau of Scientific \& Technological Cadre Foundation of China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1096). Services for accessing these data are described at the back of the journal.

References

Dean. J. A. (1985). Lange's Handbook of Chemistry. 13th ed., pp. 3-122. New York: McGraw-Hill.
Dyason, J. C., Engelhardt. L. M.. Pakawatchai, C., Healy, P. C. \& White, A. H. (1985). Aust. J. Chem. 38. 1243-1250).
Fait, J. (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin, USA.
Hou, H.-W., Xin, X.-Q.. Huang, X.-Y.. Cai. J.-H. \& Kang, B.-S. (1995). Chin. Chem. Lell. 6, 91-93.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessce. USA.
Karagiannidis, P., Aslaidis, P. \& Kessissoglou. D. P. (1989). Inorg. Chim. Acta, 156, 47-56.
Lang, J.-P., Bao, S.-A.. Xin. X.-Q. \& Yu, K.-B. (1993). Polyhedron. 12, 801-806.
Lang. J.-P.. Xin, X.-Q. \& Yu. K.-B. (1994). J. Coord. Chem. 33. 99-107.
Lang, J.-P., Zhou. W.-Y.. Xin. X.-Q.. Cai. J.-H.. Kang, B.-S. \& Yu. K.-B. (1993). Polyhedron. 12. 1647-1653.

North. A. C. T., Phillips, D. C. \& Mathews. F. S. (1968). Acta Cryst. A24, 351-353.
Sheldrick. G. M. (1990). Acta Cryst. A46. 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Cnstal Structures. University of Göttingen. Germany.
Shibahara, T.. Kobayashi. S.. Long. D. \& Xin. X. (1997). Acta Cryst. C53. 58-60.

[^0]: © 1998 International Union of Crystallography
 Printed in Great Britain - all rights reserved

